Author Archives: ermal

Ice-9 Spyware: Vonnegut-Inspired Spy Tools

vonnegut_catscradleIce-9 is a polymorph of water that melts at 45.8 ºC, that appears in Kurt Vonnegut’s “Cat’s Cradle”. When it comes into contact with liquid water under 45.8 ºC, it acts as a seed crystal that eventually turns the whole water into ice.

This is what was envisioned by renowned sci-fi satire author Kurt Vonnegut in his famous book Cat’s Cradle.  In the book, Vonnegut imagined ice-nine as a doomsday plot device, a material that when put into the wrong hands could freeze the entire planet over instantly and kill all life.

Inspired by ice-nine, we began to wonder what we could do if we had a material that could transition from liquid to solid states on command.  Here the idea of futuristic spy tools was born…

ice_9_process

We see this fictional material as more than a killing tool, we see it as a future of fabrication and manufacturing. For example, we can use this state-changing property for instantly making hand tools out of the liquid. What if the liquid can transform into a certain functional shape e.g. weapons, tools, or anything, and more importantly, at the moment we need them?  This could be revolutionary for personal fabrication, yet it also makes for a good science fiction technology.

The process is illustrated above: first we envision that a cup is designed integrated with a mold of an object (tool) contained discretely on the inside.  The cup can be filled with the “ice-nine” liquid to appear that the person is merely enjoying a soft drink, tea or coffee.  When ready, the user can agitate the solution or drop a seed crystal into the cup, causing the material to change into solid state instantly.  When the solution hardens, the user can pull out and crack open the mold to reveal the cast of a ready-to-use object.

Drawing from the influence of spy novels and James Bond movies, we envision the spy who needs a tool to open a secret cabinet inside an embassy, or an assassin who has to sneak in a weapon past metal detectors.

After doing some research, we had a good candidate for a material that fit these properties: sodium acetate.  This food-grade compound has a property that was very interesting to us: when at room temperature, it acts as a super-cooled liquid.  That is, at room temperature the compound would prefer to be a solid, but if it is in pure form, it will not crystalize at room temperature unless a seed crystal is introduced.  This was exactly what we were looking for!

For a proof-of-concept, we designed a tool and a weapon mold in Rhinoceros.  One would integrate with a coffee cup, the other would go into a team tumbler, respectively.  Here’s a 3D model sketch of the knife design

We fabricated the designs using a 3D printer, and here are the results of what we made (a knife and a wrench):

 

Finally we had a chance for some experimentation

We envision that, if we can have robust control over the crystalization and supercooling, a liquid with this state-shifting property could enable a new wave of personal product manufacturing. It doesn’t require much external energy for the printing process, and this method has the ability to turn into final shapes very quickly. As a practical application, we can always carry the liquid and the molds for different hand tools, and whenever there is immediate need, we can always turn the liquid into the tool we need and turn it back to liquid after use.  General-purpose liquid for creating and recycling tools, like omni-gel seen in the video game Mass Effect.

Ermal Dreshaj and Sang-won Leigh

W – Microwave of the Future

What is “W”?

“W” is a science fiction design concept of a high-end microwave that comes from the not-too-distant future.

What does the microwave of the future look like?

The W uses a revolutionary user interface to tell the hungry user everything he or she would like to know about a food item that is placed in the microwave.  No more buttons or dials on the microwave, W gets rid of these nuisances and will automatically calculate the optimal time required to heat or cook food to perfection!

What else?

The W can access the internet to give the user recipes and calorie information about a food item, video cooking guides and more!

Safety is our top concern–so we’ve designed W to identify materials that are not microwave safe.  If the item placed in the microwave is unsafe, our device will refuse to cook until the object is taken out.

Technical info:

  • Designed in Rhino 3D
  • Wood material
  • iPad Mini for UI overlay
  • Vuforia opensource library from Qualcomm for object recognition
  • Openframeworks user interface

First prototypes

W Photo 1

W Photo 5

Design and prototype by

Ermal Dreshaj

Sang-won Leigh

Project LIMBO

limbo_hand

What is LIMBO?

LIMBO stands for Limbs IMotion BOthers, a tech demonstration of how to control other humans remotely, via digital interfaces.

The concept is simple: first, you need two people. We start with a guide–the person who wants to be in control–he or she can control by sending a signal from any digital interface imaginable: a software UI button, a sensor controller, a hand gesture to a computer, for example.  A special glove is worn by another person far away (this person, we call the dupe) that can be triggered to control muscle contractions.  So, it’s that simple, the guide controls the movements of the dupe, far away via digital interface.

What we’ve created is one specific scenario implementation of this concept.  Here’s how it works

LIMBO_Slide07

  1. Analyze the openness of the fist of the guide using the Creative Interactive Gesture Camera and computer vision techniques provided by Intel’s Perceptual Computing SDK, which gives us some information about the guide’s hand position and state.
  2. When we detect a palm from the guide, we can send some information to the dupe about the openness of the guide’s hand.
  3. The dupe is wearing a glove with electrically conducting pads.  Using principles of functional electrical stimulation (or FES) for short, we can send a current through the dupe’s arm to activate specific muscle contractions in the dupe‘s hand.
  4. What we’ve demonstrated is effectively the mapping of the grasp of one person’s hand, directly to another’s.

LIMBO_Slide08

Here’s a video of LIMBO in action

LIMBO Presentation PDF

 

Ermal Dreshaj and Sang-won Leigh